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Abstract: In this paper, we describe the Adaptive Place Advisor, a
conversational recommendation system designed to help users decide on a
destination. We view the selection of destinations as an interactive,
conversational process, with the advisory system inquiring about desired item
characteristics and the human responding. The user model, which contains
preferences regarding items, attributes, values and value combinations, is also
acquired during the conversation. The system enhances the user’s requirements
with the user model and retrieves suitable items from a case-base. If the number
of items found by the system is unsuitable (too high, too low) the next attribute
to be constrained or relaxed is selected based on the information gain associated
with the attributes. We also describe the current status of the system and future
work.

1. Motivation

As information becomes abundant, humans are confronted with more difficult
decisions for how to access, navigate through and select available options. The sheer
number of alternatives often makes a wise choice impossible without some intelligent
computational assistance. In response to this need, there have been increased efforts
to design and implement intelligent aides for filtering web sites (e.g., Pazzani,
Muramatsu, & Billsus (1996)), news stories (e.g., Lang (1995)), TV listing (Smyth
and Cotter, (1999)) and other information sources. A related line of research and
development has led to recommendation systems (e.g. Burke, Hammond, and Young
(1996), Resnick and Varian (1997), Burke (1999)), which are not limited to filtering
information but can be used for any task that requires choice among a large set of
predefined items.

Society, on the other hand, is getting more complex and diversified. The differences
in personal preferences, social and educational backgrounds and private or
professional interests are increasing, and tools to access information are becoming



ubiquitous. This causes the need for intelligent systems that process, filter and display
available information in a personalized manner. Research on personalization has led
to the development of systems that adapt themselves to the characteristics of their
user: user adaptive systems (e.g. Rich, E. (1979), Langley (1997)).

In this paper we describe the Adaptive Place Advisor, a user adaptive, conversational
recommendation system. The system helps the user to select a destination from its
database by performing a personalized conversation.

2. Conversational Recommendation Systems

Given a large set of items and a description of the user’s needs, recommendation
systems present to the user a small set of the items that are suited to these
requirements.

The most widely used framework for recommendation systems is the ranked list
approach. In this scheme, the user specifies his needs with one or more keywords and
the system presents a usually long list of results, ordered by their predicted relevance
to the user. This technique comes from information retrieval, where it was originally
designed to help find documents or reports during library research. However, the
basic method is quite general, and it underlies most search engines for the World
Wide Web, which millions now use regularly for many quite different selection tasks.

Yet despite its current popularity, the ranked list scheme is not the only approach to
making recommendations. Consider a situation in which one person, that we will call
the inquirer asks a second person, that we will call the advisor, for assistance in
deciding on a restaurant at which to have dinner:

Inquirer: Where do you think I should eat tonight?
Advisor: Well, what type of cuisine would you like?
Inquirer: What types are there?
Advisor: Some examples are Chinese, Indian, and Mediterranean.
Inquirer: Oh, maybe Indian.
Advisor: What quality rating would you like?
Inquirer: I don’t care, as long as it’s cheap.
Advisor: How do you want to pay?
Inquirer: No, I think I’d like Chinese instead.
Advisor: Okay, we’ll switch to Chinese food. What city do you prefer?
Inquirer: How about Berkeley?
Advisor: I know three cheap Chinese restaurants in Berkeley. One is the

Long Life Vegi House on 2129 University Avenue. Does that
sound alright?

Inquirer: Sure, that sounds fine.

We will refer to systems that mimic this approach to recommendation as
conversational recommendation systems.

The interaction supported by conversational systems seems quite different from that
found in the ranked list approach. The most important distinction is that the inquirer
never hears about a complete item until only one, or at most a few, choices remain.



Rather than being overwhelmed with items that compete for his attention, he interacts
with the advisor to narrow down the choices in an iterative, manageable fashion. This
interaction takes the form of a sequence of questions, most designed to eliminate
some items from consideration. Answering these questions plays a similar role to
giving keywords with the ranked list scheme, but the aim is to remove alternatives
rather than to simply order them. The conversational process can also help the
inquirer better understand his own desires, since thinking about possible questions
and answers may clarify goals in ways a ranked list does not.

Such dialogues seem better for recommendations that must be delivered by speech
rather than visually. This makes the conversational approach well suited not only for
advice between humans, but also for computer interfaces that must rely on speech,
such as ones used while the inquirer is driving. They also seem ideal, independent of
modality, for tasks like restaurant and movie selection, in which the user needs to
converge on at most a few items. On the other hand, ranked list methods seem more
appropriate in situations where information can be presented visually and for tasks
like the selection of web pages or news stories, in which the user may well want to
examine many options.

3. User Adaptive Systems

While raw data usually does not change based on the individual initiating its
processing, the resulting information and the manner in which it is presented can be
influenced by personal differences. Diversification in society has a direct impact on
the number of ways in which users may choose their data to be processed and
presented. A computer system should ultimately be intelligent enough to take
individual variations in preferences, goals and backgrounds into account and generate
personalized information.

Individual differences can have an effect on computer systems at three levels:

• the data processing level,

• the information filtering level, and

• the information presentation level.

On the data processing level, the algorithms used for processing the data may vary
depending on the user. The information generated by the processing level can be
filtered according to its content (content based-filtering) or according to behavior of
similar users (collaborative filtering). Finally, the same piece of information can be
presented differently to different users.

User adaptive systems are intelligent systems that capture user preferences and use
them to customize themselves to individual users on one or more of the above
mentioned levels.



4. The Adaptive Place Advisor

Our goal is to develop conversational recommendation systems in which the
interaction between the system and user becomes more efficient over time due to the
system’s adjustments to the preferences of the user. While this approach does extend
to item recommendation in general, our initial work has focused on destination
selection as the initial application domain.

In the following sections, we describe the Adaptive Place Advisor, a conversational
recommendation system designed to help users decide on a destination. Our prototype
system aims to help drivers select a restaurant that meets their preferences.

To be able to recommend a restaurant based on a conversation, the Adaptive Place
Advisor has to
• carry out a conversation and generate a partial restaurant specification, i.e. a

query,

• improve or complement the query with a model of the user’s preferences,

• use this query to retrieve matching restaurants from a database and calculate their
similarity to the users’ request

• if the number of retrieved items is not acceptable, select the next attribute to be
constrained or relaxed during a conversation, and

• learn and update the user model based on these interactions.

The responsibilities for these tasks are distributed among various modules of the
system (see Fig. 1). The Dialogue Manager generates and recognizes conversations.
The Retrieval Engine is a case-based system that uses the query that has been
generated and updated by the Dialogue Manager to retrieve items from the database.

The User Modeling System generates the initial (default) query from the user model
and updates the user model based on the conversation history. The Speech Recognizer
and the Speech Generator comprise the natural language processing part of the

Fig.1: Overall System Architecture of the Adaptive Place Advisor.
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system. We used tools from Nuance1 to handle recognition and output of the
appropriate prompts from a pre-recorded set.

In the following sections we describe the operation of the dialogue manager, the
acquisition, modeling and utilization of the user preferences, and the retrieval engine.

5. Talking with the Driver

We view the conversational process in terms of heuristic search, similar to constraint
satisfaction in that it requires the successive addition of constraints on solutions, but
also analogous to game playing in that the user and system take turns. Our approach
to destination advice draws heavily on an earlier analysis of the task by Elio and
Haddadi (1998, 1999), which itself borrows ideas from linguistic research on speech
acts (e.g., Searle, 1969). We extend upon and adapt that work as needed to conform to
the requirements of speech recognition technology and the design of the adaptive
component.

Our view of conversational recommendation as heuristic search requires us to specify
the search states, operators, and operation-selection heuristics. The initial state of the
search is that of an unconstrained query, where the system and user have not yet
agreed upon any attribute values. Future states, arrived at by the operators discussed
below, are (more) constrained queries.  A state can consist of an over constrained
query with no matching items, and the final state is reached when only a few items
match the query.  The search state also includes dialogue history information to help
maintain a natural and coherent conversational flow.

The majority of dialogue operators are determined by the task-level goal of finding
one or more items that satisfy the user. The remaining, dialogue-level, moves are
required for interactions that support progress on that task. While one side of the
conversation is determined by the user, the system side of the conversation is
governed by a set of control rules, described in detail in Langley, Thompson, Elio and
Haddadi (1999). These rules select the next operator based on the search state and the
conversational context. The particular instantiation of that operator (for example,
which attribute to ask a question about next) is selected by consulting the retrieval
engine and conversation history.

We group conversational actions into one operator if they achieve the same effect, so
that two superficially different utterances constitute examples of the same operator if
they take the dialogue in the same direction. Table 1 summarizes the operators
supported by the Adaptive Place Advisor.

Let us first consider the operators available to the dialogue manager for advancing the
conversation. The most obvious, ASK-CONSTRAIN, involves asking the user to provide
a value for an attribute that does not yet have one.  This question is asked in an effort
to constrain the query.  In our example conversation, we saw four examples of this
operator, with the advisor asking questions about the cuisine, quality of the food,
payment options, and the location (city). Asking such questions is the most central

                                                          
1 Nuance Communications, Menlo Park, CA. www.nuance.com



activity of conversational interfaces, at least for recommendation tasks, since it
determines the ways in which the system constrains items presented to the user.

In some cases, the process of introducing a constraint can produce a situation in which
no candidates are satisfactory. When this occurs, the advisor applies ASK-RELAX,
which asks whether the user wants to drop a particular value, which would expand the
candidate set.

Another operator, SUGGEST-VALUES, answers a user’s query about possible values for
an attribute. In our example, this occurred in response to the inquirer’s query about
cuisine. Note that, in this case, the advisor lists only a few options rather than all
possible choices, a desirable characteristic for natural, concise conversations. A

similar operator, SUGGEST-ATTRIBUTES, responds to a user query about the possible
characteristics of destinations.

Once the conversation has reduced the alternatives to a manageable number, the
advisor must invoke RECOMMEND-ITEM, an operator that proposes a complete item to
the user. Finally, the CLARIFY operator is invoked when the system is uncertain about
what the user has said, either because of low speech recognition certainty, when an
answer diverges significantly from what was expected, or when a value could be
applicable to more than one attribute.

Now let us turn to the operators that the system assumes are available to the user. The
most central action the user can take, PROVIDE-CONSTRAIN, involves specifying the

Table 1.Dialogue operators supported in the Adaptive Place Advisor
System Operators
ASK-CONSTRAIN Asks a question to obtain a value for an attribute
ASK-RELAX Asks a question to remove a value of an attribute
SUGGEST- VALUES Suggests a small set of  possible values for an

attribute
SUGGEST- ATTRIBUTES Suggests a small set of unconstrained attributes
RECOMMEND-ITEM Recommends an item that satisfies the constraints
CLARIFY Asks a clarifying question if uncertain about the

user’s most recently performed operator
User Operators
PROVIDE-CONSTRAIN Provides a value for an attribute
REJECT-CONSTRAIN Rejects the proposed attribute
ACCEPT-RELAX Accepts the removal of a value of an attribute
REJECT-RELAX Rejects the removal of a value of an attribute
ACCEPT-ITEM Accepts proposed item
REJECT-ITEM Rejects proposed item
QUERY-ATTRIBUTES Asks system for information about possible attributes
QUERY-VALUES Asks system for information about possible values of

an attribute
START-OVER Asks the system to re-initialize the search
QUIT Asks the system to abort the search



value of some attribute. This can be a value for the attribute just asked for by the
systems ASK-CONSTRAIN operator, a value that would answer a different question, or
a replacement for a previously specified value. Our example included four instances
of this operator, two in response to questions about cuisine and city, one answering a
question different from the one posed by the system, and one replacing the previously
provided value for cuisine. Each such answer constrains the items the system
considers for presentation to the user, and thus advances the dialogue toward its goal
of identifying a few recommended restaurants.

As we saw above, the Place Advisor does not assume the user will always answer its
questions. If the person decides that the proposed attribute is inappropriate or less
relevant than some other factor, he can reject the attribute or even replace it with
another.  The REJECT-CONSTRAIN operator captures explicit rejection. We saw this in
our example when the inquirer did not specify a restaurant quality, but instead replied
‘I don’t care, as long as it’s cheap’.

In addition, the user can explicitly accept or reject other proposals that the system
makes, say for relaxing a certain attribute (ACCEPT-RELAX or REJECT-RELAX) or for a
complete item once the system recommends it (ACCEPT-ITEM or REJECT-ITEM). We
saw no examples of such rejections in our earlier scenario, but they take a form
similar to other rejections. The user can also query about the available attributes
(QUERY-ATTRIBUTES) or about possible values of that attribute (QUERY-VALUES), as
we saw for cuisine. Finally, the user can reinitialize (START-OVER) or end (QUIT) the
search.

We have implemented most of the functionality described in this section.  We used
Nuance’s SpeechObjects to interface to their speech recognition capability and output
pre-recorded prompts, with the remainder of the dialogue functionality implemented
in Java.  Further details on the implementation of the search for satisfying items can
be found in Langley et.al. 1999.

6. Acquiring, Modeling and Utilizing User Preferences

The conversation with the user, similar to constraint satisfaction, will ultimately direct
the system to a suitable solution. However, such a conversation can become very
tiring and the quality of the returned result may not be acceptable for each user.

Just as interactions with a friend who knows your concerns can be more directed and
produce better results than those with a stranger, dialogues with the Adaptive Place
Advisor become more efficient and effective over time. Our goal for user modeling
differs from the one commonly assumed in recommendation systems, which
emphasizes improving accuracy or related measures like precision and recall. We
want to improve both the subjective quality of the results and the dialogue process.

While some adaptive recommendation systems (e.g. Pazzani et.al. 1996, Lang 1995,
Linden, Hanks and Lesh 1997, Smyth and Cotter 1999) require the user to provide
direct feedback to generate the user model, our basic approach is to derive the
preferences of the users from their interactions with the system.

To efficiently provide the users with the solution that matches their needs bests, it is



necessary to acquire and model the preferences of the users. A user may have
preferences about:

• items in general,
• an attribute,
• values for an attribute, and
• the combination of certain attribute-value pairs of an item.

A preference about an item manifests itself in the user having a bias for or against a
certain item, independent of its characteristics (item preferences). The preferences
regarding an attribute represent the relative importance a user places on the attribute
while selecting an item (i.e. how important is cuisine vs. price: attribute preferences).
Preferred values show the user’s bias towards certain types of items (e.g. Italian
restaurants vs. French restaurants: value preferences) whereas preferences for certain
property combinations represent certain constraints with respect to the combined
occurrence of characteristics in an item (accepts Mexican restaurants only if they are
cheap: combination preferences). While the item preferences are related to single
items, the attribute, value and combination preferences are applicable to the retrieval
process in general.

Table 2. Elements of a user model
User Name Homer

Attributes wi Values and probabilities

Cuisine 0.4 Italian French Turkish Chinese German English

0.3 0.2 0.3 0.1 0.1 0.0

Price Range 0.2 5 4 3 2 1

0.2 0.3 0.3 0.1 0.1

... ..

Parking 0.1 Valet Street Lot

0.5 0.4 0.1

#0815 #5372 #7638 #6399 .... .....Item Accept/Reject
List 23 / 3 3 / 34 9 / 12 44 / 3 .. / .. .. / ..

Item preferences are derived by observing how often a certain item was suggested and
afterwards accepted or rejected by the user. Attribute preferences are updated
according to the item the user selects among the ones the system suggests. If the
selected item was not predicted to be the most similar one to the user’s query, then the
attribute preferences (i.e. weighting factors) have to be adjusted (c.f. Zhang and Yang,
1998, Bonzano, Cunningham and Smyth 1997). Value preferences are calculated
based on the frequencies of the values the user selects for an attribute. Combination
preferences are derived by looking at the history of selected items and learning



association rules.

Since the value preferences can be viewed as a probability distribution over the values
for each attribute, the user model (table 2) can be used to create an initial query with
default values. In the course of the conversation, this initial query is refined and
constrained with the values the user specifies for each attribute. The effects of
relevant dialogue operators on the query and the user model can be seen in table 3.
Please note that only the user operators have an effect on the query and the user
model.

The specification or rejection of values only effects the query and not the user model
directly. The user model is updated by using the last version of the query. The update
is performed after the user has selected an item or in a situation in which the system is
unable to find an item meeting the specifications of the user.

Table 3. The effects of dialogue operators on the query and the user model
Dialogue Operator Effect on Query / User Model
ACCEPT-ITEM • Update user model with query

• Update item preference
REJECT-ITEM • Update item preference
PROVIDE-
CONSTRAIN

• Set probability of value for the constrained attribute in
query to one

• Set probability of other values for that attribute in query
to zero

REJECT-CONSTRAIN • Drop attribute, i.e. set attribute preference (weighting
factor) in query to zero

ACCEPT-RELAX • Update user model with latest query
• Reset value preferences for the attribute in query from

user model. (Dialogue Manager ensures that the
question is not asked again.)

REJECT-RELAX • No effect, Dialogue manager selects next attribute
START-OVER • Initialize query with user model

7. The Retrieval Engine

The retrieval engine of the Adaptive Place Advisor retrieves the items that are most
suitable to the users’ request and match his preferences. Retrieval engines in Case-
Based Reasoning systems are usually indifferent to the users’ preferences. They
calculate the similarity of the items in the case-base to the query using the similarity
metrics and weighting factors in the domain model. The Adaptive Place Advisor has
to take the current status of the conversation and preferences of the user into account.

The current status of the conversation determines which of the attributes of the query
have values associated with them. Since these values represent explicit choices of the
user, we use them generate an SQL-query to retrieve all items that match these values.
The set of items that is returned from the database is used as a case-base for similarity



based retrieval. This allows the content of the case-base to change from interaction to
interaction.

Similarity between a case C and the current query Q is calculated as follows:

where RC is the user’s preference for the specific case, wi is the weighting factor
(attribute preference) for attribute Ai, Am is the first attribute for which the user has
not selected a value yet2, VAi is the value of Ai in the case, and P(VAi) is the user’s
value preference (probability) for this value. The local similarity metric (which
calculates the similarity for each attribute of the case and the query) is replaced by the
probability of the user requesting the value in the case.

The selection of the attribute to be constrained or relaxed next is based on an
information gain measure. The attribute to constrain is selected by determining the
attribute with the lowest entropy (highest information gain) among the attributes the
user has not yet constrained. If no items were returned from the database query, the
attribute with the highest entropy (lowest information gain) is selected among the
attributes the user has constrained so far and suggested for relaxation. This insures
that the search stays focussed, i.e. information is preserved. The case-base of the
previous query is used as a basis for this calculation.

Since we only need to find one item, the entropy of an attribute Ai can be calculated
as:

Where P(Vj) is the probability of the value of the attribute Ai to be Vj (this is not the
probability coming from the user model), |CBs| is the number of cases above a certain
similarity threshold, and |Ai=Vj|CBs is the number of items in CBs in which Ai has the
value Vj.

8. Summary and Future Work

In this paper, we described the initial version of the Adaptive Place Advisor, an
intelligent assistant designed to help people select a destination, specifically a

                                                          
2 This, simplified, representation assumes that the attributes A1 to Am-1 are the ones
the user has explicitly specified during the conversation. Obviously the real system
does not require the specified attributes to be in a sequence.
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restaurant. Unlike most recommendation systems, which accept keywords and
produce a ranked list, this one carries out a conversation with the user to progressively
narrow his options. We also described a framework for modeling user preferences and
utilizing them for guiding the conversation and during retrieval.

Although we have a detailed design and a partial implementation of the Adaptive
Place Advisor, clearly more work lies ahead. Our current similarity calculation does
not take the effects of combination preferences into account. We believe however,
that this plays an important role in the user’s approach of selecting an item and are
planning to incorporate it. Obviously we need to perform evaluations and measure the
effects of the user model on the conversation and the resulting selection. In the course
of the evaluation we will also investigate the effects of ‘overfitting’ to a user and how
to circumvent it by adding variety to the suggested items. We are also planning to
transfer the system to similar domains (e.g. selecting books, music) and translate the
system to German.
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